Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 39(20): e103791, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32865299

ABSTRACT

The link between cholesterol homeostasis and cleavage of the amyloid precursor protein (APP), and how this relationship relates to Alzheimer's disease (AD) pathogenesis, is still unknown. Cellular cholesterol levels are regulated through crosstalk between the plasma membrane (PM), where most cellular cholesterol resides, and the endoplasmic reticulum (ER), where the protein machinery that regulates cholesterol levels resides. The intracellular transport of cholesterol from the PM to the ER is believed to be activated by a lipid-sensing peptide(s) in the ER that can cluster PM-derived cholesterol into transient detergent-resistant membrane domains (DRMs) within the ER, also called the ER regulatory pool of cholesterol. When formed, these cholesterol-rich domains in the ER maintain cellular homeostasis by inducing cholesterol esterification as a mechanism of detoxification while attenuating its de novo synthesis. In this manuscript, we propose that the 99-aa C-terminal fragment of APP (C99), when delivered to the ER for cleavage by γ-secretase, acts as a lipid-sensing peptide that forms regulatory DRMs in the ER, called mitochondria-associated ER membranes (MAM). Our data in cellular AD models indicates that increased levels of uncleaved C99 in the ER, an early phenotype of the disease, upregulates the formation of these transient DRMs by inducing the internalization of extracellular cholesterol and its trafficking from the PM to the ER. These results suggest a novel role for C99 as a mediator of cholesterol disturbances in AD, potentially explaining early hallmarks of the disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cell Membrane/metabolism , Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Animals , Cell Line , Cholesterol/biosynthesis , Endoplasmic Reticulum/genetics , Fibroblasts/metabolism , Gene Knockdown Techniques , Gene Silencing , Humans , Induced Pluripotent Stem Cells , Lipid Metabolism , Lipidomics , Mice , Mitochondria/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Presenilin-2/genetics , Presenilin-2/metabolism , Protein Domains , RNA, Small Interfering , Sphingomyelin Phosphodiesterase/metabolism
2.
Int Rev Neurobiol ; 154: 235-278, 2020.
Article in English | MEDLINE | ID: mdl-32739006

ABSTRACT

Inter-organelle communication is a rapidly-expanding field that has transformed our understanding of cell biology and pathology. Organelle-organelle contact sites can generate transient functional domains that act as enzymatic hubs involved in the regulation of cellular metabolism and intracellular signaling. One of these hubs is located in areas of the endoplasmic reticulum (ER) connected to mitochondria, called mitochondria-associated ER membranes (MAM). These MAM are transient lipid rafts intimately involved in cholesterol and phospholipid metabolism, calcium homeostasis, and mitochondrial function and dynamics. In addition, γ-secretase-mediated proteolysis of the amyloid precursor protein 99-aa C-terminal fragment (C99) to form amyloid ß also occurs at the MAM. Our most recent data indicates that in Alzheimer's disease, increases in uncleaved C99 levels at the MAM provoke the upregulation of MAM-resident functions, resulting in the loss of lipid homeostasis, and mitochondrial dysfunction. Here, we discuss the relevance of these findings in the field, and the contribution of C99 and MAM dysfunction to Alzheimer's disease neuropathology.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Peptide Fragments/metabolism , Animals , Humans
3.
Hum Mol Genet ; 28(11): 1782-1800, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30649465

ABSTRACT

Charcot-Marie-Tooth disease (CMT) type 2A is a form of peripheral neuropathy, due almost exclusively to dominant mutations in the nuclear gene encoding the mitochondrial protein mitofusin-2 (MFN2). However, there is no understanding of the relationship of clinical phenotype to genotype. MFN2 has two functions: it promotes inter-mitochondrial fusion and mediates endoplasmic reticulum (ER)-mitochondrial tethering at mitochondria-associated ER membranes (MAM). MAM regulates a number of key cellular functions, including lipid and calcium homeostasis, and mitochondrial behavior. To date, no studies have been performed to address whether mutations in MFN2 in CMT2A patient cells affect MAM function, which might provide insight into pathogenesis. Using fibroblasts from three CMT2AMFN2 patients with different mutations in MFN2, we found that some, but not all, examined aspects of ER-mitochondrial connectivity and of MAM function were indeed altered, and correlated with disease severity. Notably, however, respiratory chain function in those cells was unimpaired. Our results suggest that CMT2AMFN2 is a MAM-related disorder but is not a respiratory chain-deficiency disease. The alterations in MAM function described here could also provide insight into the pathogenesis of other forms of CMT.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Endoplasmic Reticulum/genetics , GTP Phosphohydrolases/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Adult , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , Endoplasmic Reticulum/metabolism , Energy Metabolism/genetics , Female , Fibroblasts/metabolism , Genotype , Humans , Male , Middle Aged , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Membranes/metabolism , Mutation , Oxidative Phosphorylation , Severity of Illness Index
4.
Diabetes ; 67(12): 2518-2529, 2018 12.
Article in English | MEDLINE | ID: mdl-30257978

ABSTRACT

The hypothalamic ventromedial nucleus (VMN) is implicated both in autonomic control of blood glucose and in behaviors including fear and aggression, but whether these divergent effects involve the same or distinct neuronal subsets and their projections is unknown. To address this question, we used an optogenetic approach to selectively activate the subset of VMN neurons that express neuronal nitric oxide synthase 1 (VMNNOS1 neurons) implicated in glucose counterregulation. We found that photoactivation of these neurons elicits 1) robust hyperglycemia achieved by activation of counterregulatory responses usually reserved for the physiological response to hypoglycemia and 2) defensive immobility behavior. Moreover, we show that the glucagon, but not corticosterone, response to insulin-induced hypoglycemia is blunted by photoinhibition of the same neurons. To investigate the neurocircuitry by which VMNNOS1 neurons mediate these effects, and to determine whether these diverse effects are dissociable from one another, we activated downstream VMNNOS1 projections in either the anterior bed nucleus of the stria terminalis (aBNST) or the periaqueductal gray (PAG). Whereas glycemic responses are fully recapitulated by activation of VMNNOS1 projections to the aBNST, freezing immobility occurred only upon activation of VMNNOS1 terminals in the PAG. These findings support previous evidence of a VMN→aBNST neurocircuit involved in glucose counterregulation and demonstrate that activation of VMNNOS1 neuronal projections supplying the PAG robustly elicits defensive behaviors.


Subject(s)
Behavior, Animal/physiology , Glucose/metabolism , Hypoglycemia/metabolism , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Periaqueductal Gray/metabolism , Septal Nuclei/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , Animals , Glucagon/metabolism , Hypoglycemia/chemically induced , Insulin , Mice , Neural Pathways/metabolism , Optogenetics
5.
Am J Physiol Endocrinol Metab ; 315(4): E552-E564, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29944392

ABSTRACT

The ability to maintain core temperature within a narrow range despite rapid and dramatic changes in environmental temperature is essential for the survival of free-living mammals, and growing evidence implicates an important role for the hormone leptin. Given that thyroid hormone plays a major role in thermogenesis and that circulating thyroid hormone levels are reduced in leptin-deficient states (an effect partially restored by leptin replacement), we sought to determine the extent to which leptin's role in thermogenesis is mediated by raising thyroid hormone levels. To this end, we 1) quantified the effect of physiological leptin replacement on circulating levels of thyroid hormone in leptin-deficient ob/ob mice, and 2) determined if the effect of leptin to prevent the fall in core temperature in these animals during cold exposure is mimicked by administration of a physiological replacement dose of triiodothyronine (T3). We report that, as with leptin, normalization of circulating T3 levels is sufficient both to increase energy expenditure, respiratory quotient, and ambulatory activity and to reduce torpor in ob/ob mice. Yet, unlike leptin, infusing T3 at a dose that normalizes plasma T3 levels fails to prevent the fall of core temperature during mild cold exposure. Because thermal conductance (e.g., heat loss to the environment) was reduced by administration of leptin but not T3, leptin regulation of heat dissipation is implicated as playing a uniquely important role in thermoregulation. Together, these findings identify a key role in thermoregulation for leptin-mediated suppression of thermal conduction via a mechanism that is independent of the thyroid axis.


Subject(s)
Body Temperature Regulation/genetics , Body Temperature , Energy Intake , Energy Metabolism , Leptin/genetics , Locomotion , Thermal Conductivity , Animals , Body Temperature Regulation/drug effects , Cold Temperature , Leptin/pharmacology , Male , Mice , Triiodothyronine/pharmacology
6.
EMBO J ; 36(22): 3356-3371, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29018038

ABSTRACT

In the amyloidogenic pathway associated with Alzheimer disease (AD), the amyloid precursor protein (APP) is cleaved by ß-secretase to generate a 99-aa C-terminal fragment (C99) that is then cleaved by γ-secretase to generate the ß-amyloid (Aß) found in senile plaques. In previous reports, we and others have shown that γ-secretase activity is enriched in mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) and that ER-mitochondrial connectivity and MAM function are upregulated in AD We now show that C99, in addition to its localization in endosomes, can also be found in MAM, where it is normally processed rapidly by γ-secretase. In cell models of AD, however, the concentration of unprocessed C99 increases in MAM regions, resulting in elevated sphingolipid turnover and an altered lipid composition of both MAM and mitochondrial membranes. In turn, this change in mitochondrial membrane composition interferes with the proper assembly and activity of mitochondrial respiratory supercomplexes, thereby likely contributing to the bioenergetic defects characteristic of AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Mitochondria/metabolism , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Animals , Cell Line , Cell Respiration , Endoplasmic Reticulum/ultrastructure , Humans , Intracellular Membranes/ultrastructure , Mice , Mitochondria/ultrastructure , Mutation/genetics , Oxygen Consumption , Presenilins/genetics , Protein Transport , Sphingolipids/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...